# TOPIC

# **Topic Review**

### **P** TOPIC ESSENTIAL QUESTION

1. What can the rule for a polynomial function reveal about its graph, and what can the graphs of polynomial functions reveal about the solutions of polynomial equations?

## **Vocabulary Review**

#### Choose the correct term to complete each sentence.

- **2.** The \_\_\_\_\_\_ is the greatest power of the variable in a polynomial expression.
- **3.** The \_\_\_\_\_\_ is the non-zero constant multiplied by the greatest power of the variable in a polynomial expression.
- **4.** The \_\_\_\_\_\_ of a function describes what happens to its graph as *x* approaches positive and negative infinity.
- 5. \_\_\_\_\_ is the triangular pattern of numbers where each number is the sum of two numbers above it.
- 6. The \_\_\_\_\_\_ determines whether the graph of the function will cross the *x*-axis at the point or merely touch it.
- 7. The \_\_\_\_\_\_ is a formula that can be used to expand powers of binomial expressions.
- **8.** \_\_\_\_\_\_ is a method to divide a polynomial by a linear factor whose leading coefficient is 1.

- Binomial Theorem
- degree of a polynomial
- end behavior
- even function
- Factor Theorem
- identity
- leading coefficient
- multiplicity of a zero
- Pascal's Triangle
- synthetic division

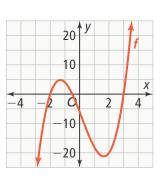
# **Concepts & Skills Review**

#### **LESSON 3-1**

**Graphing Polynomial Functions** 

#### **Quick Review**

A **polynomial** can be either a monomial or a sum of monomials. When a polynomial has more than one monomial, the monomials are also referred to as **terms**.


#### Example

Graph the function  $f(x) = 2x^3 - x^2 - 13x - 6.$ 

There are zeros at x = -2, x = -0.5, and x = 3.

There are turning points between -2 and -0.5 and between -0.5 and 3.

As  $x \to -\infty$ ,  $y \to -\infty$ . As  $x \to +\infty$ ,  $y \to +\infty$ .



#### **Practice & Problem Solving**

Graph the polynomial function. Estimate the zeros and the turning points of the graph.

- 9.  $f(x) = x^5 + 2x^4 10x^3 20x^2 + 9x + 18$
- **10.**  $f(x) = x^4 + x^3 16x^2 4x + 48$
- **11.** Reason A polynomial function has the following end behavior: As  $x \to -\infty$ ,  $y \to +\infty$ . As  $x \to +\infty$ ,  $y \to -\infty$ . Describe the degree and leading coefficient of the polynomial function.
- 12. Make Sense and Persevere After x hours of hiking, Sadie's elevation is  $p(x) = -x^3 + 11x^2 - 34x + 24$ , in meters. After how many hours will Sadie's elevation be 18 m below sea level? What do the x- and y-intercepts of the graph mean in this context?

#### LESSONS 3-2 & 3-3

Adding, Subtracting, and Multiplying Polynomials and Polynomial Identities

#### **Quick Review**

To add or subtract polynomials, add or subtract like terms. To multiply polynomials, use the Distributive Property.

Polynomial identities can be used to factor or multiply polynomials.

#### Example

Add  $(-2x^3 + 5x^2 + 2x - 3) + (x^3 - 6x^2 + x + 12)$ .

Use the Commutative and Associative Properties. Then combine like terms.

 $(-2x^3 + 5x^2 + 2x - 3) + (x^3 - 6x^2 + x - 12)$ =  $(-2x^3 + x^3) + (5x^2 - 6x^2) + (2x + x) + (-3 + 12)$ =  $-x^3 - x^2 + 3x + 9$ 

#### Example

Use polynomial identities to factor  $8x^3 + 27y^3$ .

Use the Sum of Cubes Identity. Express each term as a square. Then write the factors.

 $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$   $8x^{3} + 27y^{3} = (2x)^{3} + (3y)^{3}$  $= (2x + 3y)(4x^{2} - 6xy + 9y^{2})$ 

#### **Practice & Problem Solving**

Add or subtract the polynomials.

**13.** 
$$(-8x^3 + 7x^2 + x - 9) + (5x^3 + 3x^2 - 2x - 1)$$
  
**14.**  $(9y^4 - y^3 + 4y^2 + y - 2) - (2y^4 - 3y^3 + 6y - 7)$ 

Multiply the polynomials.

**15.** (9x - 1)(x + 5)(7x + 2)

Use polynomial identities to multiply each polynomial.

**16.**  $(5x + 8)^2$  **17.** (7x - 4)(7x + 4)

Factor the polynomial.

**18.**  $x^6 - 64$  **19.**  $27x^3 + y^6$ 

Use Pascal's Triangle or the Binomial Theorem to expand the expressions.

- **20.**  $(x-2)^4$  **21.**  $(x+5y)^5$
- **22.** Communicate Precisely Explain why the set of polynomials is closed under subtraction.
- 23. Reason The length of a rectangle is represented by  $3x^3 - 2x^2 + 10x - 4$ , and the width is represented by  $-x^3 + 6x^2 - x + 8$ . What is the perimeter of the rectangle?

#### **LESSON 3-4**

**Dividing Polynomials** 

#### **Quick Review**

Polynomials can be divided using long division or synthetic division. **Synthetic division** is a method to divide a polynomial by a linear factor whose leading coefficient is 1.

Example

Use synthetic division to divide  $x^4 - 5x^3 - 6x^2 + 2x - 8$  by x + 3.

| -3 | 1                     | -5           | -6           | 2            | -8                 |
|----|-----------------------|--------------|--------------|--------------|--------------------|
|    |                       | -3           | 24           | -54          | 156                |
|    | 1                     | -8           | 18           | -52          | 148                |
|    | $\downarrow$          | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$       |
|    | <i>x</i> <sup>3</sup> | $-8x^{2}$    | +18x         | x −52 -      | $+\frac{148}{x+3}$ |

The quotient is  $x^3 - 8x^2 + 18x - 52$ , and the remainder is 148.


#### **Practice & Problem Solving**

Use long division to divide.

**24.**  $x^4 + 2x^3 - 8x^2 - 3x + 1$  divided by x + 2

Use synthetic division to divide.

- **25.**  $x^4 + 5x^3 + 7x^2 2x + 17$  divided by x 3
- 26. Make Sense and Persevere A student divided  $f(x) = x^3 + 8x^2 9x 3$  by x 2 and got a remainder of 19. Explain how the student could verify the remainder is correct.
- 27. Reason The area of a rectangle is  $4x^3 + 14x^2 18$  in.<sup>2</sup>. The length of the rectangle is x + 3 in. What is the width of the rectangle?



#### LESSONS 3-5 & 3-6

Zeros of Polynomial Functions and Theorems about Roots of Polynomial Equations

#### **Quick Review**

You can factor and use synthetic division to find zeros of polynomial functions. Then you can use the zeros to sketch a graph of the function.

The **Rational Root Theorem** states that the possible rational roots, or zeros, of a polynomial equation with integer coefficients come from the list of numbers of the form:  $\pm \frac{factor of a_0}{factor of a_n}$ .

#### Example

List all the possible rational solutions for the equation  $0 = 2x^3 + x^2 - 7x - 6$ . Then find all of the rational roots.

 $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{6}{1}$ 

Use synthetic division to find that the roots are  $-\frac{3}{2}$ , -1, and 2.

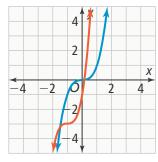
#### Practice & Problem Solving

#### Sketch the graph of the function.

- **28.**  $f(x) = 2x^4 x^3 32x^2 + 31x + 60$
- **29.**  $g(x) = x^3 x^2 20x$
- **30.** What x-values are solutions to the equation  $x^3 + 2x^2 4x + 8 = x^2 x + 4$ ?
- **31.** What values of x are solutions to the inequality  $x^3 + 3x^2 4x 12 > 0$ ?
- **32.** What are all of the real and complex roots of the function  $f(x) = x^4 4x^3 + 4x^2 36x 45$ ?
- **33.** A polynomial function Q of degree 4 with rational coefficients has zeros  $1 + \sqrt{5}$  and -7i. What is an equation for Q?
- **34. Reason** What does the graph of a function tell you about the multiplicity of a zero?
- **35.** Make Sense and Persevere A storage unit in the shape of a rectangular prism measures 2x ft long, x + 8 ft wide, and x + 9 ft tall. What are the dimensions of the storage unit, in feet, if its volume is 792 ft<sup>3</sup>?

#### LESSON 3-7

#### **Transformations of Polynomial Functions**

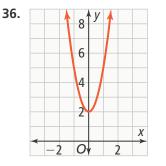

#### **Quick Review**

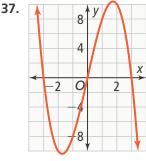
Polynomial functions can be translated, reflected, and stretched in similar ways to other functions you have studied.

#### Example

How does the graph of  $f(x) = 2(x + 1)^3 - 3$ compare to the graph of the parent function?

Parent function:  $y = x^3$ 





Adding 1 shifts the graph to the left 1 unit. Multiplying by 2 stretches the graph vertically.

Subtracting 3 shifts the graph down 3 units.

#### **Practice & Problem Solving**

Classify each function as even, odd, or neither.





- **38.** Error Analysis A student says the graph of  $f(x) = 0.5x^4 + 1$  is a vertical stretch and a translation up 1 unit of the parent function. Explain the student's error.
- **39.** Make Sense and Persevere The volume of a refrigerator, in cubic centimeters, is given by the function V(x) = (x)(x + 1)(x - 2). Write a new function for the volume of the refrigerator in cubic millimeters if x is in centimeters.