1-7 Additional Practice

Solving Linear Systems Using Matrices

Solve each linear system of equations as a matrix.

1.
$$\begin{cases} 6x - y = 8 \\ -3x + 3y = 6 \end{cases}$$

2.
$$\begin{cases} x - 2y + 3z = 18 \\ 9x + 2y - z = -2 \\ -6x - y + 2z = 4 \end{cases}$$

3.
$$\begin{cases} 3x - 4y + 8z = 1 \\ 2y - 3z = -9 \\ -2x + 3y - 5z = 2 \end{cases}$$

Solve the following system of equations.

4. $\begin{bmatrix} 2 & -6 & -7 \\ -1 & 3 & 14 \end{bmatrix}$ **5.** $\begin{bmatrix} 5 & 3 & -4 & -11 \\ -1 & 6 & 4 & 5 \\ 0 & 8 & -1 & 0 \end{bmatrix}$ **6.** $\begin{bmatrix} 5 & 3 & -4 & -11 \\ -1 & 6 & 4 & 5 \\ 0 & 8 & 6 & 14 \end{bmatrix}$

Solve each system of equations using technology with matrices.

- 7. $\begin{cases} 4x + y 2z = 3\\ 2y + z = 4\\ 3x 3y z = 9 \end{cases}$ 8. $\begin{cases} 5x 2y + z = -1\\ -x y 2z = 5\\ 3x + 2y + 2z = 2 \end{cases}$ 9. $\begin{cases} 3x + 5z = -4\\ -2x + y 3z = 9\\ -x 2y + 9z = 0 \end{cases}$
- 10. The movie theater sells popcorn in three different sizes. A small popcorn costs \$2, a medium popcorn costs \$5, and a large popcorn costs \$10. Ruby sold 250 total containers of popcorn for a total of \$1,726. Ruby sold twice as many large containers as small ones.
 - a. How many of each size popcorn did Ruby sell?
 - b. How much money was made from selling the small-size popcorn?
- **11.** Write a matrix for a system of equations that does not have a unique solution.

1-7 Additional Practice

Solving Linear Systems Using Matrices

Solve each linear system of equations as a matrix.

1.
$$\begin{cases} 6x - y = 8 \\ -3x + 3y = 6 \end{cases}$$

(2, 4)
2.
$$\begin{cases} x - 2y + 3z = 18 \\ 9x + 2y - z = -2 \\ -6x - y + 2z = 4 \end{cases}$$

(1, -4, 3)
3.
$$\begin{cases} 3x - 4y + 8z = 1 \\ 2y - 3z = -9 \\ -2x + 3y - 5z = 2 \end{cases}$$

(-9, 3, 5)

Solve the following system of equations.

4. $\begin{bmatrix} 2 & -6 & -7 \\ -1 & 3 & 14 \end{bmatrix}$	$5. \begin{bmatrix} 5 & 3 & -4 & -11 \\ -1 & 6 & 4 & 5 \\ 0 & 8 & -1 & 0 \end{bmatrix}$	$6. \begin{bmatrix} 5 & 3 & -4 & -11 \\ -1 & 6 & 4 & 5 \\ 0 & 8 & 6 & 14 \end{bmatrix}$
(-4.625, 2.25)	(2, 0, 3)	(3, -2, 5)

Solve each system of equations using technology with matrices.

(4x + y - 2z = 3)	$\int 5x - 2y + z = -1$	(3x + 5z = -4)
7. $\begin{cases} 4x + y - 2z = 3\\ 2y + z = 4 \end{cases}$	8. $\begin{cases} -x - y - 2z = 5 \end{cases}$	9. $\begin{cases} 3x + 5z = -4 \\ -2x + y - 3z = 9 \end{cases}$
3x - 3y - z = 9	3x + 2y + 2z = 2	$\left(-x-2y+9z=0\right)$
(4, -1, 6)	(2, 3, -5)	(-3, 6, 1)

- 10. The movie theater sells popcorn in three different sizes. A small popcorn costs \$2, a medium popcorn costs \$5, and a large popcorn costs \$10. Ruby sold 250 total containers of popcorn for a total of \$1,726. Ruby sold twice as many large containers as small ones.
 - a. How many of each size popcorn did Ruby sell?
 68 small, 46 medium, 136 large
 - b. How much money was made from selling the small-size popcorn?
 \$136
- 11. Write a matrix for a system of equations that does not have a unique solution. Sample answer:

2	-6	-7]
L–1	3	14