2-4 Additional Practice

SavvasRealize.com

Complex Numbers and Operations

Use square roots to solve each equation. Write your solutions using the imaginary unit, *i*.

1. $x^2 = -81$ **2.** $x^2 = -625$ **3.** $x^2 = -144$

Simplify each expression.

4. (-2+3i) + (5-2i) **5.** (-6+7i) + (6-7i) **6.** (8+5i) + (6-7i)

Write each product in the form a + bi.

7. (4-3i)(-5+4i) **8.** (2-i)(-3+6i) **9.** (5-3i)(5+3i)

Write the quotient in the form a + bi.

- **10.** $\frac{5+2i}{4i}$ **11.** $\frac{3-2i}{4-3i}$ **12.** $\frac{3i}{-2+i}$
- **13.** Why does multiplying a + bi by the complex conjugate a bi eliminate *i* from the expression?

Solve the equations below using factoring.

14. $x^2 + 360 = 0$ **15.** $x^2 + 40 = 0$ **16.** $x^2 + 10 = 0$

17. The total resistance of a circuit is given by the formula $R_T = \frac{1}{R_1} + \frac{1}{R_2}$. $R_1 = 4 + 6i$ ohms and $R_2 = 2 - 4i$ ohms. What is R_T ?

2-4 Additional Practice

Complex Numbers and Operations

Use square roots to solve each equation. Write your solutions using the imaginary unit, *i*.

1. $x^2 = -81$ 2. $x^2 = -625$ 3. $x^2 = -144$ $x = \pm 9i$ $x = \pm 25i$ $x = \pm 12i$

Simplify each expression.

4. (-2 + 3i) + (5 - 2i)**5.** (-6 + 7i) + (6 - 7i)**6.** (8 + 5i) + (6 - 7i)**3** + i**014 - 2i**

Write each product in the form a + bi.

7. (4 - 3i)(-5 + 4i)8. (2 - i)(-3 + 6i)9. (5 - 3i)(5 + 3i)-8 + 31i15i34

Write the quotient in the form a + bi.

10. $\frac{5+2i}{4i}$	11. $\frac{3-2i}{4-3i}$	12. $\frac{3i}{-2+i}$
$\frac{1}{2} - \frac{5i}{4}$	$\frac{18}{25} + \frac{i}{25}$	$\frac{3}{5} - \frac{6i}{5}$

13. Why does multiplying a + bi by the complex conjugate a - bi eliminate *i* from the expression?

a + bi and a - bi are factors of a difference of two perfect squares. bi - bi = 0, removing the *i* from the middle term. bi times bi is b^2i^2 which is the same as -b because $i^2 = -1$.

Solve the equations below using factoring.

 14. $x^2 + 360 = 0$ 15. $x^2 + 40 = 0$ 16. $x^2 + 10 = 0$

 x = 6i, x = -6i x = 2i, x = -2i x = -i, x = i

 17. The total resistance of a circuit is given by the formula $R_T = \frac{1}{R_1} + \frac{1}{R_2}$.

 $R_1 = 4 + 6i$ ohms and $R_2 = 2 - 4i$ ohms. What is R_T ?

 $R_T = \frac{23}{120} + \frac{11i}{120}$ ohms.