4-1 Additional Practice

Inverse Variation and the Reciprocal Function

2.

Do the tables below represent a direct variation or an inverse variation? Explain.

1.	x	у
	2	10
	4	5
	5	4
	20	1

x	у
1	6
2	12
5	30
7	42

-		
3.	x	у
	0.2	25
	0.5	62.5
	2	250
	3	375

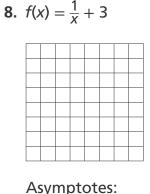
Suppose x and y vary inversely. Write an equation that models each inverse variation. Find y when x = 10.

4. x = 7 when y = 2 **5.** x = 4 when y = 0.2 **6.** x = 2 when y = 5

Graph each function. Identify the asymptotes of each graph and state the domain and the range of each function.

7.
$$f(x) = \frac{12}{x}$$

Asymptotes: Domain:


Range:

Range:

Domain:

- **9.** The length of a pipe in a panpipe ℓ , in ft, is inversely proportional to its pitch p, in hertz. The inverse variation is modeled by the equation $p = \frac{497}{\ell}$. Find the length of pipe required to produce a pitch of 220 Hz.
- **10.** From the table of values, how can you determine that the data do not represent an inverse variation?

x	-4	-2	2	4	6	8
у	100	100	100	50	25	20

Inverse Variation and the Reciprocal Function

2.

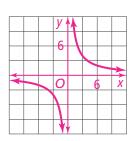
Do the tables below represent a direct variation or an inverse variation? Explain.

Name

X	у	
1	6	
2	12	
5	30	
7	42	
Dire	ect;	y = 6x

x y
0.2 25
0.5 62.5
2 250
3 375

3.

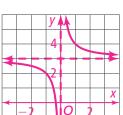

Inverse; $y = \frac{20}{x}$

Suppose x and y vary inversely. Write an equation that models each inverse variation. Find y when x = 10.

4. <i>x</i> = 7 when <i>y</i> = 2	5. <i>x</i> = 4 when <i>y</i> = 0.2	6. <i>x</i> = 2 when <i>y</i> = 5
$y = \frac{14}{x}; \frac{7}{5}$	$y = \frac{4}{5x}$; 0.08 or $\frac{2}{25}$	$y = \frac{10}{x}$; 1
y — x ' 5	5x' 5.00 01 25	y = x''

Graph each function. Identify the asymptotes of each graph and state the domain and the range of each function.

7.
$$f(x) = \frac{12}{x}$$


Asymptotes: x = 0, y = 0Domain: all real numbers except x = 0Range: all real numbers except y = 0 Asymptotes: x = 0, y = 3Domain: all real numbers except x = 0Range: all real numbers

except y = 3be ℓ , in ft, is inversely proportional to its pi

- **9.** The length of a pipe in a panpipe ℓ , in ft, is inversely proportional to its pitch p, in hertz. The inverse variation is modeled by the equation $p = \frac{497}{2}$. Find the length of pipe required to produce a pitch of 220 Hz. **about 2.26 ft**
- **10.** From the table of values, how can you determine that the data do not represent an inverse variation?

x	-4	-2	2	4	6	8
y	100	100	100	50	25	20

Sample answer: The product xy is not constant.

8. $f(x) = \frac{1}{x} + 3$