5-2 Additional Practice

Properties of Exponents and Radicals

Rewrite each expression using the properties of exponents.

1.
$$\left(\frac{4}{64^{\frac{5}{6}}}\right)^{\frac{1}{2}}$$

2.
$$3m^{\frac{1}{4}}(mn^{\frac{1}{3}})^{\frac{3}{2}}$$

3.
$$2a^{\frac{1}{2}}(5a^{\frac{1}{2}}b^{\frac{1}{4}})^{\frac{2}{4}}$$

2.
$$3m^{\frac{1}{4}}(mn^{\frac{1}{3}})^{\frac{3}{2}}$$
 3. $2a^{\frac{1}{2}}(5a^{\frac{1}{2}}b^{\frac{1}{4}})^2$ **4.** $(x^{\frac{1}{3}} \cdot x^{\frac{1}{9}})^6 \div x^{\frac{1}{3}}$

How can you rewrite each expression?

5.
$$\sqrt[3]{125x^9y^7}$$

6.
$$\sqrt[4]{\frac{a^5b^3}{625a}}$$

6.
$$\sqrt[4]{\frac{a^5b^3}{625a}}$$
 7. $\sqrt[5]{288x^3y^7}$

8.
$$\sqrt[3]{\frac{297m^4n^5}{3m^2n}}$$

What is the reduced radical form of each expression?

9.
$$(\sqrt[4]{32})^2$$

10.
$$(\sqrt[3]{4^5})(\sqrt[3]{5^5})$$

10.
$$(\sqrt[3]{4^5})(\sqrt[3]{5^5})$$
 11. $\sqrt{a^3b^5} \cdot 5\sqrt{4ab}$ **12.** $\sqrt[3]{\frac{24x^3}{36x}}$

12.
$$\sqrt[3]{\frac{24x^3}{36x}}$$

How can you rewrite each expression in a simpler form?

13.
$$\sqrt[3]{3000} + \sqrt[3]{3} - \sqrt[3]{1029}$$

14.
$$\sqrt{45} - \sqrt{180} - \sqrt{720}$$

Multiply.

15.
$$(x - \sqrt{8})(x + \sqrt{8})$$

16.
$$\sqrt{12}(\sqrt{3} + \sqrt{6})$$

What is the reduced radical form of each expression?

17.
$$\frac{3-\sqrt{7}}{3-\sqrt{5}}$$

18.
$$\frac{-5x}{3-\sqrt{x}}$$

- **19.** Discuss the possible values of k such that $\sqrt{50} + \sqrt{k}$ can be written as a single term.
- **20.** Write $\sqrt{\frac{16}{7}}$ in two different ways, one where the number is simplified and another where the denominator is rationalized.
- **21.** The length of a rectangle is $(3 + \sqrt{7})m$ and its width is $(1 + 2\sqrt{7})n$. What is the area of the rectangle?

5-2 Additional Practice

Properties of Exponents and Radicals

Rewrite each expression using the properties of exponents.

1.
$$\left(\frac{4}{64^{\frac{5}{6}}}\right)^{\frac{1}{2}}$$

2.
$$3m^{\frac{1}{4}}(mn^{\frac{1}{3}})^{\frac{3}{2}}$$
 3. $2a^{\frac{1}{2}}(5a^{\frac{1}{2}}b^{\frac{1}{4}})^2$ **4.** $(x^{\frac{1}{3}} \cdot x^{\frac{1}{9}})^6 \div x^{\frac{1}{3}}$

3.
$$2a^{\frac{1}{2}}(5a^{\frac{1}{2}}b^{\frac{1}{4}})^2$$

4.
$$(x^{\frac{1}{3}} \cdot x^{\frac{1}{9}})^6 \div x^{\frac{1}{3}}$$

$$50a^{\frac{3}{2}}b^{\frac{1}{2}}$$

$$X^{\frac{7}{3}}$$

How can you rewrite each expression?

5.
$$\sqrt[3]{125x^9y^7}$$

6.
$$\sqrt[4]{\frac{a^5b^3}{625a}}$$

7.
$$\sqrt[5]{288x^3y^7}$$

each expression?

6.
$$\sqrt[4]{\frac{a^5b^3}{625a}}$$

7. $\sqrt[5]{288x^3y^7}$

8. $\sqrt[3]{\frac{297m^4n^5}{3m^2n}}$

$$5x^3y^{\frac{7}{3}}$$

$$2y\sqrt[5]{9x^3y^2}$$

What is the reduced radical form of each expression?

9.
$$(\sqrt[4]{32})^2$$
 $2^{\frac{5}{2}}$

10.
$$(\sqrt[3]{4^5})(\sqrt[3]{5^5})$$

10.
$$(\sqrt[3]{4^5})(\sqrt[3]{5^5})$$
 11. $\sqrt{a^3b^5} \cdot 5\sqrt{4ab}$ 12. $\sqrt[3]{\frac{24x^3}{36x}}$ 20 $\frac{5}{3}$ 10 $a^2|b^3|$ 3 $\frac{2x^2}{3}$

How can you rewrite each expression in a simpler form?

13.
$$\sqrt[3]{3000} + \sqrt[3]{3} - \sqrt[3]{1029}$$

14.
$$\sqrt{45} - \sqrt{180} - \sqrt{720}$$

$$-15\sqrt{5}$$

Multiply.

15.
$$(x - \sqrt{8})(x + \sqrt{8})$$

16.
$$\sqrt{12}(\sqrt{3} + \sqrt{6})$$

6 + 6 $\sqrt{2}$

What is the reduced radical form of each expression?

17.
$$\frac{3-\sqrt{7}}{3-\sqrt{5}}$$

$$\frac{9 - 3\sqrt{5} - 3\sqrt{7} - \sqrt{35}}{4}$$

18.
$$\frac{-5x}{3-\sqrt{x}}$$

$$\frac{-15x - 5x\sqrt{x}}{9 - x}$$

- **19.** Discuss the possible values of k such that $\sqrt{50} + \sqrt{k}$ can be written as a single term. k must be a product of 2 and a perfect square.
- 20. Write $\sqrt{\frac{16}{7}}$ in two different ways, one where the number is simplified and another where the denominator is rationalized. $\frac{4\sqrt{7}}{7}$, $\frac{4}{\sqrt{7}}$
- **21.** The length of a rectangle is $(3 + \sqrt{7})m$ and its width is $(1 + 2\sqrt{7})n$. What is the area of the rectangle? $17mn + 7mn\sqrt{7}$