6-6 Additional Practice

Exponential and Logarithmic Equations

Find all solutions of the equation. Round answers to the nearest thousandth, if necessary.

1. $\left(\frac{1}{3}\right)^{x-6} = 9^x$ 2. $5^{x+3} = 5^{2x-1}$ 3. $0.0001 = 10^{2x}$ 4. $14^{x+7} = 196^{x+2}$ 5. $36x^2 = 216^{x+3}$ 6. $2^{3x-2} = 4x^2$ 7. 15 = 4x8. $4 + 3^{x-5} = 15$ 9. $e^{x+1} = 5$ 10. $4^{x-3} - 3 = 6$ 11. $3^{x-2} = 4$ 12. $5^{x+3} = 4$

Find all solutions of the equation.

- **13.** $\log_3 (2x) = \log_3 18$ **14.** $\log_5 (x^2 x) = \log_5 (2x 2)$
- **15.** $\log_2 (2x) = \log_2 (x + 3)$ **16.** $\ln(x^2 4x) = \ln(-4x + 25)$
- **17.** $\ln(2x+3) = \ln(-2x+7)$ **18.** $\log_4(x+1) = \log_4(3x-5)$

Solve the equations below using a graphing calculator to find the point(s) of intersection. Round answers to the nearest thousandth.

19. $\log (3x - 4)^2 = x + \log x$ **20.** $\ln(5x) = x^2$

			y		
		л			
		4			
		r			
		~			
					X
-2		0			
		2			
	_	-2,	1		

21. A bee farm has 700 bees on September 1st. Winter is coming and the number of bees decreases by 35% every 2 months from September 1st until March 1st. How many bees are on the farm on March 1st?

6-6 Additional Practice

Exponential and Logarithmic Equations

Find all solutions of the equation. Round answers to the nearest thousandth, if necessary.

1. $\left(\frac{1}{3}\right)^{x-6} = 9^x$	2. $5^{x+3} = 5^{2x-1}$	3. $0.0001 = 10^{2x}$
x = 2	x = 4	x = -2
4. $14^{x+7} = 196^{x+2}$	5. $36x^2 = 216^{x+3}$	6. $2^{3x-2} = 4x^2$
x = 3	x = 3	x = 2
7. 15 = 4 <i>x</i>	8. $4 + 3^{x-5} = 15$	9. $e^{x+1} = 5$
<i>x</i> ≈ 1.953	$x \approx 7.183$	$x \approx 0.609$
10. $4^{x-3} - 3 = 6$	11. $3^{x-2} = 4$	12. $5^{x+3} = 4$
x \approx 4.585	$x \approx 3.262$	$x \approx -2.139$

13. The price of an item was \$50.00 in 2010. Suppose that from 2010 to 2016 the price of the item increased by 6% every year. What is the price of the item in 2016? Round answer to the nearest hundredth. \$70.93

Find all solutions of the equation. Round answers to the nearest hundredth, if necessary.

14.	$\log_3 (2^x) = \log_3 18$ $x = 9$	15.	$\log_5 (x^2 - 2x) = \log_5 (x - 2)$ x = 2
16.	$\log_2 (2x) = \log_2 (x+3)$ $x = 3$	17.	$ln(x^2 - 4x) = ln(-4x + 25)$ x = 5 or -5
18.	ln(2x + 3) = ln(-2x + 7) x = 1	19.	$\log_4 (x + 1) = \log_4 (3x - 5)$ x = 3

Solve the equations below by graphing. Use a graphing calculator to help you. Round answers to the nearest thousandth.

20. $\log (3x - 4)^2 = x + \log x$	21. $\ln(5x) = x^2$
(1.353, 1.485)	(0.209, 0.044) and
	(1.393, 1.941)