8-2 Additional Practice

Law of Sines and Law of Cosines

1. How can you derive the Law of Sines for angles A and C?

- **2.** In $\triangle MNO$, $m \ge M = 135^{\circ}$, m = 18, and n = 14. Find $m \ge O$. Round your answer to the nearest tenth.
- **3.** In $\triangle ABC$, $m \ge A = 60^\circ$, a = 8, and b = 6. Find $m \ge B$. Round your answer to the nearest tenth.
- **4.** Describe and correct the error a student made in using the Law of Cosines to solve for *b* in $\triangle ABC$ where $m \angle B = 120^\circ$, a = 16, and c = 14.

$b^2 = 16^2 + 14^2 - (16)(14)(\cos 120^\circ)$	$b^2 = 16^2 + 14^2 - $ (16)(14)(cos 120°)
b ² = 256 + 196 - (224)(-0.5)	b ² = 256 + 196 - ()(-0.5)
$b^2 = 256 + 196 + 112 = 564$	$b^2 = 256 + 196 + ___ = 676$
$b \approx 23.7$	b =

5. The triangle illustrates the side view of a roof truss with edge-lengths of 11 ft and 23 ft. The angle between the edges is 55°. What is the length of *AC* to the nearest foot?

6. Dyani throws a ball to Edgar, who is 8 m away. When Edgar catches the ball, he turns 55°, and then throws the ball 9 m to Hana. What angle does Hana turn to throw the ball to Dyani? Round to the nearest tenth.

8-2 Additional Practice

Law of Sines and Law of Cosines

1. How can you derive the Law of Sines for angles A and C?

 $\sin A = \frac{x}{c}$ or $x = c \sin A$ and $\sin C = \frac{x}{a}$ or $x = a \sin C$ $c \sin A = a \sin C \Rightarrow \frac{\sin A}{a} = \frac{\sin C}{c}$

2. In $\triangle MNO$, $m \angle M = 135^{\circ}$, m = 18, and n = 14. Find $m \angle O$. Round your answer to the nearest tenth.

11.6°

- 3. In $\triangle ABC$, $m \ge A = 60^\circ$, a = 8, and b = 6. Find $m \ge B$. Round your answer to the nearest tenth. 40.5°
- **4.** Describe and correct the error a student made in using the Law of Cosines to solve for *b* in $\triangle ABC$ where $m \angle B = 120^\circ$, a = 16, and c = 14.

The student did not multiply *ac* cos *B* by 2.

$b^2 = 16^2 + 14^2 - (16)(14)(\cos 120^\circ)$	b ² = 16 ² + 14 ² - <u>2</u> (16)(14)(cos 120°)
b ² = 256 + 196 - (224)(-0.5)	<i>b</i> ² = 256 + 196 - (<u>448</u>)(-0.5)
$b^2 = 256 + 196 + 112 = 564$	$b^2 = 256 + 196 + 224 = 676$
$b \approx 23.7$	b = 26

5. The triangle illustrates the side view of a roof truss with edge-lengths of 11 ft and 23 ft. The angle between the edges is 55°. What is the length of AC to the nearest foot? 19 ft

6. Dyani throws a ball to Edgar, who is 8 m away. When Edgar catches the ball, he turns 55°, and then throws the ball 9 m to Hana. What angle does Hana turn to throw the ball to Dyani? Round to the nearest tenth.

56.1°