8-3 Additional Practice

Trigonometric Identities

- **1.** How are $cos(x + \pi)$ and $cos(2\pi x)$ related to cos x?
- 2. What is a simplified form of the expression $\cot(x \frac{\pi}{2})$?
- 3. What is a simplified form of the expression $\cos(-x) \cot(-x) \sin x$?
- 4. What is the exact value of tan 75°?
- **5.** What is the approximate value of $sin\left(-\frac{\pi}{36}\right)$?
- **6.** During calculations, a student made an error. What error did she make? What is the correct answer?

enVision Algebra2

savvasrealize.com

$$\sin 105^\circ = \sin(60^\circ + 45^\circ)$$
$$= \sin 60^\circ \cos 45^\circ - \sin 45^\circ \cos 60^\circ$$
$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$$
$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

7. The length of a guy-wire supporting a vertical communication antenna is d feet. The length of its shadow depends on the measure of the angle θ it makes with the horizon. The shadow of the guy-wire is defined by $L = \frac{d \sin(\theta - 90^\circ)}{-\sin \theta}$. Show that this equation is equivalent to $L = d \cot \theta$.

8-3 Additional Practice

Trigonometric Identities

1. How are $cos(x + \pi)$ and $cos(2\pi - x)$ related to cos x?

 $cos(x + \pi) = -cos x$ and $cos(2\pi - x) = cos x$

- 2. What is a simplified form of the expression $\cot(x \frac{\pi}{2})$? —tan x
- 3. What is a simplified form of the expression cos (-x) cot (-x) sin x?
 -cos² x
- 4. What is the exact value of tan 75°? $\sqrt{3} + 2$
- 5. What is the approximate value of $sin(-\frac{\pi}{36})$? -0.09
- 6. During calculations, a student made an error. What error did she make? What is the correct answer?

 $\sin 105^\circ = \sin(60^\circ + 45^\circ)$ $= \sin 60^\circ \cos 45^\circ - \sin 45^\circ \cos 60^\circ$ $= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$ $= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$ $= \frac{\sqrt{6} - \sqrt{2}}{4}$

Sample Answer: The student remembered the formula for the sine of a sum of angles incorrectly. There should be a plus sign instead of a minus sign between the two terms on the right. The correct answer is $\frac{\sqrt{6} + \sqrt{2}}{4}$.

enVision Algebra 2

savvasrealize.com

7. The length of a guy-wire supporting a vertical communication antenna is d feet. The length of its shadow depends on the measure of the angle θ it makes with the horizon. The shadow of the guy-wire is defined by $L = \frac{d \sin(\theta - 90^\circ)}{-\sin \theta}$. Show that this equation is equivalent to $L = d \cot \theta$.

$$L = \frac{d \sin(\theta - 90^\circ)}{-\sin \theta} = \frac{d \sin \left[-(90^\circ - \theta)\right]}{-\sin \theta}$$
$$= \frac{-d \sin(90^\circ - \theta)}{-\sin \theta}$$
$$= \frac{d \cos(\theta)}{\sin \theta} = d \cot \theta$$