PRACTICE & PROBLEM SOLVING

UNDERSTAND

7. Look for Relationships Are the logarithmic and exponential functions shown inverses of each other? Explain.

- 8. Communicate Precisely How is the graph of the logarithmic function $g(x) = \log_2 (x 7)$ related to the graph of the function $f(x) = \log_2 x$? Explain your reasoning.
- **9.** Error Analysis Describe and correct the error a student made in finding the inverse of the exponential function $f(x) = 5^{x-6} + 2$.

$y = 5^{x-6} + 2$	Write in $y = f(x)$ form.
$x = 5^{y-6} + 2$	Interchange x and y.
$x - 2 = 5^{y-6}$	Subtract 2 from each side.
$y - 6 = \log_5 x - 2$	Rewrite in logarithmic form.
$y = \log_5 x - 2 + 6$	Add 6 to each side.
$y = \log_5 x + 4$	Simplify. 🗸 🗸
$f'(x) = \log_5 x + 4$	

- 10. Make Sense and Persevere The number of members m who joined a new workout center w weeks after opening is modeled by the equation $m = 1.6^{w+2}$, where $0 \le w \le 10$. Find the inverse of the function and explain what the inverse tells you.
- **11. Use Structure** The graph shows a transformation of the parent graph $f(x) = \log_3 x$. Write an equation for the graph.

PRACTICE

Graph each function and identify the domain and range. List any intercepts or asymptotes. Describe the end behavior. SEE EXAMPLE 1

12. $y = \log_5 x$	13. $y = \log_8 x$
14. $y = \log_{\frac{3}{10}} x$	15. $y = \log_{0.1} x$

Describe the graph in terms of transformations of the parent function $f(x) = \log_6 x$. Compare the asymptote and *x*-intercept of the given function to the parent function. SEE EXAMPLE 2

- **16.** $g(x) = \frac{1}{2} \log_6 x$ **17.** $g(x) = \log_6 (-x)$
- **18.** Describe how the graph of $g(x) = -\ln(x + 0.5)$ is related to the graph of $f(x) = \ln x$. SEE EXAMPLE 2

Find the equation of the inverse of each function. SEE EXAMPLE 3

19. $f(x) = 5^{x-3}$	20. $f(x) = \left(\frac{1}{2}\right)^{x-1}$
21. $f(x) = 6^{x+7}$	22. $f(x) = \log_2(8x)$

- **23.** $f(x) = \ln (x + 3) 1$ **24.** $f(x) = 4 \log_2 (x 3) + 2$
- **25.** The altitude *y*, in feet, of a plane *t* minutes after takeoff is approximated by the function $y = 5,000 \ln(.05t) + 8,000$. Solve for *t* in terms of *y*. What is a situation in which it would be easier to use your new equation rather than the original? SEE EXAMPLE 4
- **26.** Find the average rate of change of the function graphed below over the interval $10 \le x \le 50$. Compare it to the average rate of change of $y = 3 \log x + 12$ over the same interval. SEE EXAMPLE 5

PRACTICE & PROBLEM SOLVING

APPLY

- 27. Model with Mathematics The equation $r = 90 - 25 \log(t + 1)$ is to model a student's retention r after taking a physics course where r represents a student's test score (as a percent), and t represents the number of months since taking the course.
 - a. Make a table of values for ordered pairs that represent $r = 90 - 25 \log(t + 1)$, rounding to the nearest tenth. Then sketch the graph of the function on a coordinate plane through those ordered pairs. (You may use a graphing calculator to check.)
 - b. Find the equation of the inverse. Interpret the meaning of this function.
- 28. Higher Order Thinking As shown by the diagram, an earthquake occurs below Earth's surface at point F (the focus). Point E, on the surface above the focus, is called the *epicenter*. A seismograph station at point S records the waves of energy generated by the earthquake. The surface wave magnitude *M* of the earthquake is given by this formula:

$$M = \log\left(\frac{A}{T}\right) + 1.66(\log D) + 3.3$$

In the formula, A is the amplitude of the ground motion in micrometers, T is the period in seconds, and D is the measure of ES in degrees.

- a. Find surface wave magnitude of an earthquake with A = 700 micrometers, T = 2 and $D = 100^{\circ}$.
- **b.** In the formula, $20^{\circ} < D \le 160^{\circ}$. By how much can the size of arc ES affect the surface wave magnitude? Explain.

ASSESSMENT PRACTICE

29. The logarithmic function $g(x) = \ln x$ is transformed to $h(x) = \ln(x + 2) - 1$. Which of the following are true? Select all that apply.

(A) q(x) is translated 2 units upward.

- (B) q(x) is translated 2 units to the right.
- \bigcirc q(x) is translated 2 units to the left.
- \bigcirc q(x) is translated 1 unit downward.
- \bigcirc g(x) is translated 1 unit to the left.
- ^(E) The vertical asymptote shifts 2 units to the left.
- [©] The vertical asymptote shifts 2 units to the right.
- 30. SAT/ACT The graph shows the exponential function $f(x) = 5^{x+1}$. Which of the following functions represents its inverse, $f^{-1}(x)$?

(a) $f^{-1}(x) = 1 + \log_5 x$ (c) $f^{-1}(x) = \log_5 (x - 1)$

(B) $f^{-1}(x) = \log_5 x - 1$ (D) $f^{-1}(x) = \log_5 (x + 1)$

31. Performance Task The logarithmic function $M(d) = 5 \log d + 2$ is used to find the limiting magnitude of a telescope, where d represents the diameter of the lens of the telescope (mm) that is being used for the observation.

Part A Find the limiting magnitude of a telescope having a lens diameter of 40 mm.

Part B Find the equation of the inverse of this function.

Part C Interpret why astronomers may wish to use the inverse of this function. Justify your reasoning.

Part D Using the inverse function, find the diameter of the lens that has a limiting magnitude of 13.5. Check your answer with the table function of your graphing calculator.

