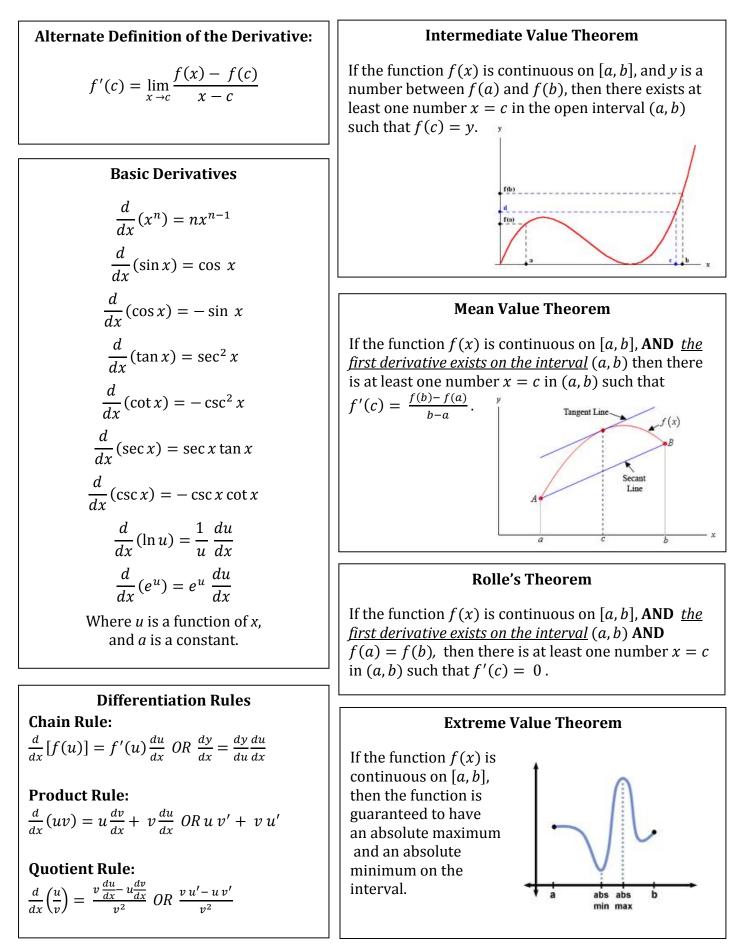
STUFF YOU MUST KNOW COLD ...



Derivative of an Inverse Function: If *f* has an inverse function *g* then:

$$g'(x) = \frac{1}{f'(g(x))}$$

derivatives are reciprocal slopes

Implicit Differentiation

Remember that in implicit differentiation you will have a $\frac{dy}{dx}$ for each *y* in the original function or equation. Isolate the $\frac{dy}{dx}$. If you are taking the second derivative $\frac{d^2y}{dx^2}$, you will often substitute the expression you found for the first derivative somewhere in the process.

Average Rate of Change ARoC:

$$m_{sec} = \frac{f(b) - f(a)}{b - a}$$

Instantaneous Rate of Change IRoC:

$$m_{tan} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Curve Sketching And Analysis

y = f(x) must be continuous at each:Critical point: $\frac{dy}{dx} = 0 \text{ or undefined}$ LOOK OUT FOR ENDPOINTS Local minimum: $\frac{dy}{dx} \text{ goes } (-, 0, +) \text{ or } (-, und, +) \text{ OR } \frac{d^2y}{dx^2} > 0$ Local maximum: $\frac{dy}{dx} \text{ goes } (+, 0, -) \text{ or } (+, und, -) \text{ OR } \frac{d^2y}{dx^2} < 0$ Point of inflection: concavity changes d^{2y} goes from (+, 0, -) (-, 0, +) (+, und, -) = 0

 $\frac{d^2y}{dx^2} \text{ goes from } (+,0,-), (-,0,+), (+,und,-), \text{ OR}$ (-,und,+)

First Derivative:

- f'(x) > 0 function is increasing.
- f'(x) < 0 function is decreasing.
- f'(x) = 0 or DNE: Critical Values at x.

Relative Maximum: f'(x) = 0 or DNE and sign of f'(x) changes from + to -.

Relative Minimum: f'(x) = 0 or DNE and sign of f'(x) changes from - to +.

Absolute Max or Min: MUST CHECK ENDPOINTS ALSO

The maximum value is a *y*-value.

Second Derivative:

f''(x) > 0 function is concave up.

f''(x) < 0 function is concave down.

f'(x) = 0 and sign of f''(x) changes, then there is a point of inflection at *x*.

Relative Maximum: f''(x) < 0**Relative Minimum:** f''(x) > 0

Write the equation of a tangent line at a point:

You need a slope (derivative) and a point.

$$y_2 - y_1 = m (x_2 - x_1)$$

Horizontal Asymptotes:

1. If the largest exponent in the numerator is < largest exponent in the denominator then $\lim_{x \to \pm\infty} f(x) = 0$.

2. If the largest exponent in the numerator is > the largest exponent in the denominator then $\lim_{x \to +\infty} f(x) = DNE$

3. If the largest exponent in the numerator is = to the largest exponent in the denominator then the quotient of the leading coefficients is the asymptote.

$$\lim_{x \to \pm \infty} f(x) = \frac{a}{b}$$

ONLY FOUR THINGS YOU CAN DO ON A CALCULATOR THAT NEEDS NO WORK SHOWN:

- 1. Graphing a function within an arbitrary view window.
- 2. Finding the zeros of a function.
- 3. Computing the derivative of a function numerically.
- 4. Computing the definite integral of a function numerically.

Distance, Velocity, and Acceleration

- x(t) =position function
- v(t) = velocity function
- a(t) =acceleration function

The derivative of position (*ft*) is velocity (*ft/sec*); the derivative of velocity (*ft/sec*) is acceleration (*ft/sec*²).

The integral of acceleration (ft/sec^2) is velocity (ft/sec); the integral of velocity (ft/sec) is position (ft).

Speed is | velocity |

If acceleration and velocity have the *same sign*, then the speed is *increasing*..

If the acceleration and velocity have *different signs*, then the speed is *decreasing*.

The particle is moving right when velocity is positive and particle is moving left when velocity is negative.

Displacement = $\int_{t_0}^{t_f} v(t) dt$

Total Distance = $\int_{initial time}^{final time} |v(t)| dt$

Average Velocity

 $= \frac{\text{final position} - \text{initial position}}{\text{total time}} = \frac{\Delta x}{\Delta t}$

Accumulation = $x(0) + \int_{t_0}^{t_f} v(t) dt$

LOGARITHMS Definition:

 $ln N = p \leftrightarrow e^{p} = N$ ln e = 1ln 1 = 0ln(MN) = ln M + ln N $ln\left(\frac{M}{N}\right) = ln M - ln N$ $p \cdot ln M = ln M^{p}$

EXPONENTIAL GROWTH and DECAY:

When you see these words use: $y = Ce^{kt}$

"y is a differentiable function of t such that y > 0 and y' = ky"

"the rate of change of y is proportional to y"

When solving a differential equation:

- 1. Separate variables first
- 2. Integrate
- 3. Add +C to one side
- 4. Use initial conditions to find "C"
- 5. Write the equation if the form of y = f(x)

"PLUS A CONSTANT"

The Fundamental Theorem of Calculus

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Where $F'(x) = f(x)$

Corollary to FTC

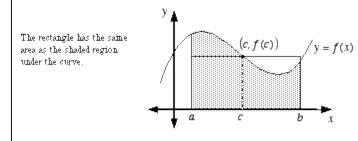
$$\frac{d}{dx}\int_{a}^{g(u)}f(t)dt = f(g(u))\frac{du}{dx}$$

Mean Value Theorem for Integrals: **The Average Value**

If the function f(x) is continuous on [a, b] and the first derivative exists on the interval (*a*, *b*), then there exists a number x = c on (a, b) such that

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{\int_{a}^{b} f(x) \, dx}{b-a}$$

This value f(c) is the "average value" of the function on the interval [*a*, *b*].



Values of Trigonometric Functions for Common Angles					
θ	sin θ	cos θ	tan θ		
0	0	1	0		
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$		

sin θ	cos θ	tan θ	
0	1	0	
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	
$\frac{\sqrt{2}}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$	1	
$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$	$\frac{1}{2}$	$\sqrt{3}$	
1	0	"∞"	

-1

0

Must know both inverse trig and trig values:

EX.
$$tan \frac{\pi}{4} = 1$$
 and $sin^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{3}$
ODD and EVEN:
 $sin(-x) = -sin x \text{ (odd)}$
 $cos(-x) = cos x \text{ (even)}$

0

π

4

π

3

π 2

π

Riemann Sums

A Riemann Sum means a rectangular approximation. Approximation means that vou DO NOT EVALUATE THE INTEGRAL; you add up the areas of the rectangles.

Trapezoidal Rule For uneven intervals, may need to calculate area of one trapezoid at a time and total.

$$A_{Trap} = \frac{1}{2}h[b_1 + b_2]$$

For even intervals:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2n} \begin{bmatrix} y_0 + 2y_1 + 2y_2 + \dots \\ + 2y_{n-1} + y_n \end{bmatrix}$$

Trigonometric Identities

Pythagorean Identities:

 $sin^2\theta + cos^2\theta = 1$

The other two are easy to derive by dividing by $\sin^2 \theta$ or $\cos^2 \theta$.

$$1 + \tan^2 \theta = sec^2 \theta$$

 $\cot^2 \theta + 1 = \csc^2 \theta$

Double Angle Formulas:

 $\sin 2x = 2 \sin x \cos x$

 $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$

Power-Reducing Formulas:

$$\cos^{2} x = \frac{1}{2} (1 + \cos 2x)$$
$$\sin^{2} x = \frac{1}{2} (1 - \cos 2x)$$

Quotient Identities:

 $\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$

Reciprocal Identities:

 $\csc x = \frac{1}{\sin x}$ or $\sin x \csc x = 1$ $\sec x = \frac{1}{\cos x}$ or $\cos x \sec x = 1$

Basic Integrals

$$\int du = u + C$$

$$\int u^n du = \frac{u^{n+1}}{n+1} + C \ n \neq -1$$

$$\int \frac{du}{u} = \ln|u| + C$$

$$\int e^u du = e^u + C$$

$$\int e^u du = \frac{a^u}{\ln a} + C$$

$$\int \sin u \, du = -\cos u + C$$

$$\int \sin u \, du = -\cos u + C$$

$$\int \cos u \, du = \sin u + C$$

$$\int \tan u \, du = -\ln|\cos u + C|$$

$$\int \cot u \, du = \ln|\sin u| + C$$

$$\int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$\int \sec u \, du = -\ln|\csc u + \cot u| + C$$

$$\int \sec^2 u \, du = -\cot u + C$$

$$\int \sec^2 u \, du = -\cot u + C$$

$$\int \sec u \tan u \, du = \sec u + C$$

$$\int \sec u \tan u \, du = \sec u + C$$

Area and Solids of Revolution: NOTE: (*a*, *b*) are *x*-coordinates and (c, d) are y-coordinates **Area Between Two Curves:** Slices \perp to x-axis: $A = \int_{a}^{b} [f(x) - g(x)] dx$ **Slices** \perp **to** *y***-axis:** $A = \int_{c}^{d} [f(y) - g(y)] dy$ **Volume By Disk Method: About x-axis:** $V = \pi \int_a^b [R(x)]^2 dx$ **About** *y***-axis:** $V = \pi \int_{c}^{d} [R(y)]^2 dy$ **Volume By Washer Method: About x-axis:** $V = \pi \int_{a}^{b} ([R(x)]^{2} - [r(x)]^{2}) dx$ **About** *y***-axis:** $V = \pi \int_{c}^{d} ([R(y)]^{2} - [r(y)]^{2}) dy$ **Volume By Shell Method: About** *x***-axis**: $V = 2 \pi \int_{c}^{d} y [R(y)] dy$ **About** *y***-axis:** $V = 2 \pi \int_a^b x [R(x)] dx$

General Equations for Known Cross Section where *base* is the distance between the two curves and *a* and *b* are the limits of integration.

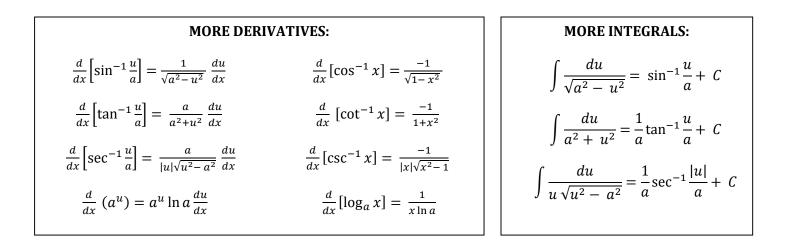
SQUARES: $V = \int_{a}^{b} (base)^2 dx$

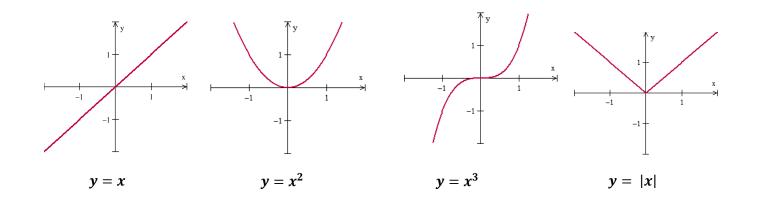
TRIANGLES EQUILATERAL: $V = \frac{\sqrt{3}}{4} \int_{a}^{b} (base)^{2} dx$

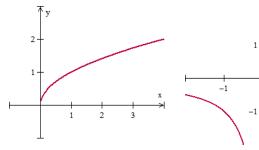
ISOSCELES RIGHT: $V = \frac{1}{4} \int_{a}^{b} (base)^2 dx$

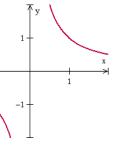
RECTANGLES: $V = \int_{a}^{b} (base) \cdot h \, dx$ where *h* is the height of the rectangles.

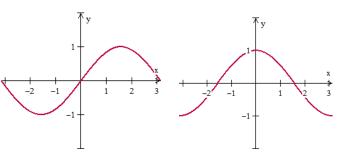
SEMI-CIRCLES: $V = \frac{\pi}{2} \int_{a}^{b} (radius)^{2} dx$ where radius is $\frac{1}{2}$ distance between the two curves.







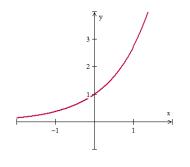




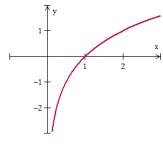
 $y = \sqrt{x}$

y = sin x

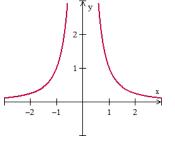
 $y = \cos x$



 $y = e^x$



y = ln x



 $y = \frac{1}{x^2}$

