7.1 Basic Integration Rules
- Review procedures for fitting an integrand to one of the basic integration rules.
Assignment
- Vocabulary and teal boxes
- p461 2, 3, 6, 8, 9, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 48 52–64 even, 72, 81–84, 94–98
Additional Resources
- AP Topics: 6.9, 6.10, 6.14
- Khan Academy
Fitting Integrands to Basic Integration Rules
This section is a collection of examples and strategies for integrating. Most you have seen before, but some of these are unique cases. I won’t copy them here, buy I will highlight the summary at the end.
Procedures for Fitting Integrands to Basic Integration Rules
Expand (numerator)
\[\begin{align} (1+e^x)^2 = 1 +2e^x +e^{2x} \end{align}\]Separate numerator
\[\begin{align} \frac{1+x}{x^2+1} = \frac{1}{x^2+1} + \frac{x}{x^2+1} \end{align}\]Complete the square
\[\begin{align} \frac{1}{\sqrt{2x-x^2}} = \frac{1}{\sqrt{1-(x-1)^2}} \end{align}\]Divide improper rational functions
\[\begin{align} \frac{x^2}{x^2+1} = 1 - \frac{1}{x^2+1} \end{align}\]Add and subtract terms in numerator
\[\begin{align} \frac{2x}{x^2+2x+1} &= \frac{2x+2-2}{x^2+2x+1} = \frac{2x+2}{x^2+2x+1} - \frac{2}{(x+1)^2} \end{align}\]Use trigonometric identities
\[\begin{align} \cot^2 x = \csc^2 x - 1 \end{align}\]Multiply and divide by Pythagorean conjugate
\[\begin{align} \frac{1}{1+\sin x} &= \left(\frac{1}{1 + \sin x}\right)\left(\frac{1 - \sin x}{1 - \sin x}\right) \\[1em] &= \frac{1-\sin x}{1-\sin^2 x} \\[1em] &= \frac{1-\sin x}{\cos^2 x} \\[1em] &= \sec^2 x - \frac{\sin x}{\cos^2 x} \end{align}\]